Types of Sorting
Sorting algorithms are divided into two categories: internal and external sorts.
If all the records to be sorted are kept internally in the main memory, they can be
sorted using an internal sort. However, if there are a large number of records to be
sorted, they must be kept in external files on auxiliary storage. They have to be sorted
using external sort.
1. Bubble sort
2. Insertion sort
3. Selection sort
4. Quick sort
5. Heap sort
6. Shell sort
7. Bucket sort
8. Radix sort
9. File sort
10. Merge sort

General Sort Concepts
The order in which the data is organized, either ascending or descending, is called sort order.

Sort Stability
A sorting method is said to be stable if at the end of the method, identical elements occur
in the same relative order as in the original unsorted set.

Consider the following unsorted sequence of marks to be sorted in descending order. Sort this sequence using the stable and unstable sort methods.

Name Uma Sera Sakira Kesha Ayse Harsha Lelo
Marks 80 90 93 95 83 90 83
Solution The stable sort method will sort the sequence as
Name Kesha Sakira Sera Harsha Ashish Lelo Uma
Marks 95 93 90 90 83 83 80
whereas, the unstable sort method may sort the same sequence as
Name
Marks
Kasturi Sanika Harsha Saurabh Lelo Ashish Uma
95 93 90 90 83 83 80

Quick Sort
Quick sort is based on the divide-and-conquer strategy. This sort technique initially
selects an element called as pivot that is near the middle of the list to be sorted, and then
the items on either side are moved so that the elements on one side of pivot are smaller
and on the other side are larger.

Now, the pivot is at the right position with respect to the
sorted sequence. These two steps, selecting the pivot and arranging the elements on either
side of pivot, are now applied recursively to both the halves of the list till the list size
reduces to one.

To choose the pivot, there are several strategies. The popular way is considering the
first element as the pivot.
Thus, the recursive algorithm consists of four steps:
1. If the array size is 1, return immediately.
2. Pick an element in the array to serve as a ‘pivot’ (usually the left-most element in the
list).
3. Partition the array into two parts—one with elements smaller than the pivot and
the other with elements larger than the pivot by traversing from both the ends and
performing swaps if needed.
4. Recursively repeat the algorithm for both partitions.

Let us consider an example. Let the list of numbers to be sorted be {13, 11, 14, 11, 15,
19, 12, 16, 15, 13, 15, 18, 19}. Now, the first element 13 becomes pivot. We need to place
13 at a proper location so that all elements to its left are smaller and the right are greater.

Initially, the array is pivoted about its first element A[pivot] 13.

· Starting from the left end, find the first element that is greater than or equal to the pivot
· Searching backward from the right end, find the first element that is less than the pivot
· Interchange (swap) these two elements
· Repeat, searching from where we left off, until done

[image:]
[image:]

[image:]

[image:]

[bookmark: _GoBack][image:]
image1.png
Let us ﬁrst\ find the elements larger than the pivot, that is, 13. In addition, let us find
the last element not larger than the pivot. These elements are in positions 2 and 9. Let us
swap those.

13 1 14 11|15 | 19 | 12 | 16 | 15 | 13 | 16 | 18 | 19

13 1 13 | 11 15 | 19 | 12 | 16 | 15 14 | 15 | 18 | 19

image2.png
Let us again start scanning from both the directions.

13 1 13 1 15 19 12 16 | 15 14 15 18 19
The elements 12 and 15 are to be swapped to get the following sequence:
13 1" 13 | 11 12 | 19 | 15 | 16 | 15 14 | 15 | 18 19

image3.png
Let us repeat the steps to get the following sequence:

13

1"

13

1"

12

19

15

16

15

14

15

18

19

image4.png
Here, the lower and upper bounds have crossed. So let us now swap the pivot-with
element 12.

12 | 11 13 | 11 13 | 19 | 15 | 16 | 15 | 14 | 15 | 18 | 19

Here, we get two partitions as represented in the following sequence:

12 | 1 13 | 11 13 19 | 15 | 16 | 15 | 14 | 15 | 18 [19

image5.png
Recursively applying similar steps to each sub-list on the right and left side of the
pivot, we get,

1M | 11 12 | 13 13 15 | 15 | 16 | 16 | 18 | 19 | 19

